
Authentication and
Authorization

By Brian and Arslan

What is Authentication?
● The process of proving

and determining whether
or not a user is genuine
and who the user claims
to be

● Used in a variety of
applications that require
usernames and
passwords to log in

Authentication vs Identification and Authorization
● Identification involves using something such as a username, ID card, etc. in

order to uniquely identify a user
● Authentication involves proving that an identity actually belongs to the

user
● Authorization involves providing permissions to a user according to the

user’s proven identity

Identify Authenticate Authorize

Authentication Factors
● Elements which are used in

order to help authenticate a
user

● Most commonly used are
knowledge, possession, and
inherence factors

● Single-factor authentication,
Multi-factor authentication

Authentication Factors
● Knowledge Factor: Information that is known only to a specific user (Ex.

Passwords, PIN numbers)
● Possession Factor: Items that are owned by a specific user (Ex.

Software/Hardware tokens, ID card)
● Inherence Factor: What the user is (Ex. Biometrics) and the actions of the

user (Ex. Keystroke dynamics)
● Location Factor: The user’s physical location

Diving into Possession Factors
● There are two main types: Hardware and

Software Tokens.

Diving into Possession Factors
Hardware Tokens

● Connected Tokens
○ Devices that are physically connected

to the user’s computer to be used
later for authentication purposes.

○ Known to transmit data
automatically

○ Different types include card readers,
wireless tags and tokens in a form of
USB key.

Diving into Possession Factors
● Disconnected Tokens

○ Have no connection to user’s
computer

○ Typically uses a built-in-screen to
display the generated
authenticated data, which is
manually typed in by the user

Diving into Possession Factors
Software Tokens

● Typically stored on a general-purpose
electronic devices such as computers,
mobile phones, etc.

● If needed, software tokens can be
duplicated

● Conversely, credentials in the
hardware tokens are stored on a
dedicated hardware device and
cannot be copied.

Diving into Possession Factors
Software Tokens

● A certificate loaded onto the device
and stored securely may serve this
purpose

● Authentication resources generate a
single-use PIN and send the soft token
code through email or other formats
which then shows up on user’s device
for the user to authorize it.

Single-Factor Authentication
● Most common form is the use of a

password to authenticate an identity
determined by the username

● Vulnerable to password leaks, password
cracking

Single-Factor Authentication
● Using two or more elements all under the

same factor is still single-factor
authentication

● Ex. Requiring a password along with date of
birth is single-factor authentication

Multi-Factor Authentication
● An authentication method where

a user is granted access only after
successfully presenting two or
more different factors

● Two-factor authentication (2FA)
is an example or subset of multi
factor authentication

Two-Factor Authentication (2FA)
● Most common form is a combination of

knowledge and possession factors
● Phones are widely used as the

possession factor

Two-Factor Authentication (2FA)
● Ex. Debit card and PIN, password and

Google Authenticator code
● Two-factor authentication mechanisms

for online accounts include SMS,
push-based, Time-based One-time
Password

SMS Two-Factor Authentication
● Sends a short one-time code

through SMS that needs to be input
at some point during the login
process

● Considered to be one of the most
vulnerable forms of 2FA

● Vulnerable if lock-screen
notifications are allowed

SMS Two-Factor Authentication
● SIM card can be taken from phone

to view SMS 2FA messages
elsewhere

● SS7 protocol vulnerability allows for
SMS message interception

● Attacker tricks phone company to
transfer phone number to new SIM
card

Push-based Two-Factor Authentication
● Whenever a user logs into an online

account, an access request is sent to
the associated phone and a push
notification appears

● Requires a connection to the internet

Push-based Two-Factor Authentication
● Requests encrypted using asymmetric

key pairs (private key stored on phone,
public key on server)

● Server uses public key to verify
signature from the phone’s response

Push-based Two-Factor Authentication

Time-based One-Time Password (TOTP) 2FA
● A secret key is shared between the

phone application and server (typically
with a QR code)

● Algorithm creates a one-time password
based on the key and current time at
regular intervals

Time-based One-Time Password (TOTP) 2FA
● Both the phone and server generate

passwords that are synchronized by
time

● Derived from the HMAC-based
One-time Password (HOTP) algorithm

Time-based One-Time Password (TOTP) 2FA

TOTP and the HMAC-based OTP Algorithms (HOTP)

● HMAC: Hash-based Message Authentication Code, generated through using
a hash function on a secret key and an arbitrary value

● hash(key, value)
● Hash function HMAC-SHA1 is often used for this purpose

TOTP and the HMAC-based OTP Algorithms (HOTP)

● HOTP algorithm first generates an HMAC with a “counter” as the value, then
truncates it (see picture below for truncate algorithm, DT) to generate a
more user-friendly one-time password

● truncate(hash(key, counter))
● Take P, convert to decimal, take at least the last 6 digits of this number
● TOTP algorithm replaces the “counter” in HOTP with the current Unix time

Two-Factor Authentication Vulnerabilities

● Tokens that act as the possession
factor can still be phished or
stolen through social engineering

● Ex. Phishing site pretends to be
Google login, asks for credentials
and Google Authenticator token,
automate submission

Two-Factor Authentication Vulnerabilities

● Compromised device (backdoor,
spyware, etc.)

● Physically stealing the device
holding the token

Authorization with OAuth 2.0 (Open Authorization)

● Open standard for delegated
authorization

● Designed to work in tandem with
HTTP

● Basic purpose is to allow for
utilization of a user’s account
information through a third-party

● Does not expose the user’s
credentials and limits the
information given to third-party

A Brief History of OAuth
● First released as OAuth 1.0 in 2007
● At first, conceived as an authentication method for the Twitter application

program interface
● OAuth 2.0 became widely popular and is now used by lots of third-party

applications
● SInce then, multiple new features for OAuth 2.0 have been implemented,

such as new flows, simplified signatures and short lived tokens with long
lived authorizations

Example Scenario Regarding Authorization

.

Example Scenario Regarding Authorization

.

Example Scenario Regarding Authorization

How Does OAuth 2.0 Work?
1. Developer manually registers
his/her website as an OAuth client on
the OAuth provider’s website. Client
receives the following for
identification:

● client_id (publicly known)
● client_secret (only shared between

client and provider)

OAuth Client

OAuth Provider

Register client_id
client_secret

2. User’s browser is on the client’s
website. User makes a request to the
client side through the browser for
delegated access to a provider’s
resources.

How Does OAuth 2.0 Work?

OAuth Client

I want access to my account
on Facebook, Google, etc...

User Request

How Does OAuth 2.0 Work?
2. OAuth client specifies user’s request
in the scope parameter. User’s browser
is redirected by the client to provider’s
website. Client sends to provider:

● client_id
● client_secret
● redirect_uri (to return to client

website)
● scope (specifies what is being

requested).

OAuth Client

OAuth Provider

client_id
client_secret

redirect_uri
scope

How Does OAuth 2.0 Work?
3. On the provider’s website, the user
is asked to log in and confirm that the
client is allowed access to the user’s
account info from the provider. ● Login to

provider
website

● Allow client to
access data
from account
on provider?

Provider’s Website

How Does OAuth 2.0 Work?
4. After user allows or denies access,
the user’s browser is sent back to
redirect_uri (usually back to the client’s
website) by the provider. If permission
is granted, an authorization code is
sent back from provider to client.

OAuth Client

OAuth Provider

Authorization Code

How Does OAuth 2.0 Work?
5. Client requests an access_token and
a refresh_token from provider by
sending the following:

● authorization code (string)
● client_id
● client_secret
● redirect_uri

OAuth Client

OAuth Provider

Authorization Code
client_id

client_secret
redirect_uri

How Does OAuth 2.0 Work?
6. Provider sends the following to
client through the redirect_uri:

● access_token
● expires_in (time that access_token

is valid for)
● refresh_token (used to gain a new

access_token)

OAuth Client

OAuth Provider

access_token
expires_in
refresh_token

How Does OAuth 2.0 Work?
7. User on client website can now make
requests to access data from provider.
Client is authorized to get the data
from provider using the access_token.

OAuth Client

OAuth Provider

GET request
with

access_token

Request to
provider

How Does OAuth 2.0 Work?
8. After access_token expires, the
client can send the following to obtain
a new access_token:

● refresh_token
● client_id
● client_secret

OAuth Client

OAuth Provider

refresh_token
client_id

client_secret

OAuth 2.0 Demo

OAuth 2.0 Vulnerabilities
● Users can be tricked into providing malicious third-party APIs with

permission to access account info through phishing
● Ex. In 2017, State of Minnesota lost around $90,000 from users agreeing to

share Gmail account information using OAuth 2.0 with the malicious
“Google Apps” service

OAuth 2.0 Vulnerabilities
● Open redirect vulnerability
● Redirect is allowed to any URI

specified in parameters, no
validation

● Attacker can intercept and change
the redirect_uri parameter to point
to a malicious destination

OAuth 2.0 Vulnerabilities
● OAuth server sends responses,

which can contain authentication
codes and access_tokens, to the
malicious destination

● Solution is to validate URIs in
parameters by testing them against
a list of allowed URIs

Sources
● https://blogs.getcertifiedgetahead.com/identification-authentication-authorization/
● https://medium.com/@renansdias/the-5-factors-of-authentication-bcb79d354c13
● https://blog.centrify.com/sfa-mfa-difference/
● https://venturebeat.com/2017/09/24/a-guide-to-common-types-of-two-factor-authentication/
● https://www.nick-horne.com/2017/03/10/time-based-one-time-password-algorithm-explained-totp/
● https://help.duo.com/s/article/3252?language=en_US
● https://rosettacode.org/wiki/Time-based_One-time_Password_Algorithm
● https://tools.ietf.org/html/rfc4226#section-5
● https://medium.freecodecamp.org/how-time-based-one-time-passwords-work-and-why-you-should-use-them-in-your-app-fd

d2b9ed43c3
● https://www.cbtnuggets.com/blog/2016/02/part-1-authentication-for-the-modern-web/?_ga=2.51939629.522477182.15541

36843-1936675294.1554136843
● https://www.youtube.com/watch?v=tFYrq3d54Dc
● https://mashable.com/article/hackers-beat-two-factor-authentication-2fa-phishing/#odwo6HsIPOqG
● https://en.wikipedia.org/wiki/Authentication
● https://en.wikipedia.org/wiki/OAuth
● https://www.cbtnuggets.com/blog/2016/03/part-3-lets-play-oauth-2-playground/?_ga=2.113748611.522477182.1554136843-19

36675294.1554136843
● https://web.archive.org/web/20170508194157/http://www.bbc.co.uk/news/technology-39845545
● https://oauth.net/advisories/2014-1-covert-redirect/
● https://tools.ietf.org/html/rfc6819#section-4.1.5

https://blogs.getcertifiedgetahead.com/identification-authentication-authorization/
https://medium.com/@renansdias/the-5-factors-of-authentication-bcb79d354c13
https://blog.centrify.com/sfa-mfa-difference/
https://venturebeat.com/2017/09/24/a-guide-to-common-types-of-two-factor-authentication/
https://www.nick-horne.com/2017/03/10/time-based-one-time-password-algorithm-explained-totp/
https://help.duo.com/s/article/3252?language=en_US
https://rosettacode.org/wiki/Time-based_One-time_Password_Algorithm
https://tools.ietf.org/html/rfc4226#section-5
https://medium.freecodecamp.org/how-time-based-one-time-passwords-work-and-why-you-should-use-them-in-your-app-fdd2b9ed43c3
https://medium.freecodecamp.org/how-time-based-one-time-passwords-work-and-why-you-should-use-them-in-your-app-fdd2b9ed43c3
https://www.cbtnuggets.com/blog/2016/02/part-1-authentication-for-the-modern-web/?_ga=2.51939629.522477182.1554136843-1936675294.1554136843
https://www.cbtnuggets.com/blog/2016/02/part-1-authentication-for-the-modern-web/?_ga=2.51939629.522477182.1554136843-1936675294.1554136843
https://www.youtube.com/watch?v=tFYrq3d54Dc
https://mashable.com/article/hackers-beat-two-factor-authentication-2fa-phishing/#odwo6HsIPOqG
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/OAuth
https://www.cbtnuggets.com/blog/2016/03/part-3-lets-play-oauth-2-playground/?_ga=2.113748611.522477182.1554136843-1936675294.1554136843
https://www.cbtnuggets.com/blog/2016/03/part-3-lets-play-oauth-2-playground/?_ga=2.113748611.522477182.1554136843-1936675294.1554136843
https://web.archive.org/web/20170508194157/http://www.bbc.co.uk/news/technology-39845545
https://oauth.net/advisories/2014-1-covert-redirect/
https://tools.ietf.org/html/rfc6819#section-4.1.5

